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SUMMARY

This report discusses the work partially supported under NASA

Contract NAS 8-29662, "Segregation Effects During Solidification
in Weightless Melts." The contract covers the period from July 5,
11973 to July 4, 1974.

‘ During the contract period, the generalized problem of determin-
ing the temperature and solute concentration profiles during direc-
tional solidification of binary alloys with surface evaporation has
been mathematically formulated. Realistic initial and boundary
conditions have been defined, and a computer program has been de-

-veloped and checked out.

The program computes the positions of two moving (evaporation
and solidification) boundaries and their velocities of movement,
and also the temperature and solute concentration profiles in the

semi-infinite material body at selected instants of time.
The program has the following unique features:

* Two moving boundaries are involved, i.e.,
the evaporative boundary and freezing

boundary

® Surface evaporation, and its related ef-
fects such as material loss, evaporative
segregation, and surface cooling due to
the heat of evaporation, have been con-

sidered

* Surface temperature is realistically de-
termined by the combined effect of heat
radiation, evaporative cooling, and

thermal diffusion



® Material parameters such as solid and liquid
densities, specific heats, thermal conductivi-
ties, mass diffusivities, and latent heat of
fusion or evaporation, can all vary with both

the temperature and composition

® Realistic phase diagrams involving curved

liquidus and solidus lines are used

Our computer simulation work on solidification clearly shows
that constitutional supercooling readily occurs and within-melt
nucleation must then happen, particularly with reduced effective
liquid mass transfer under zero-gravity conditions. Such results
enabled us to explain and correlate some perplexing space solidi-
fication phenomena observed on Skylab, e.g., E. McKannan's weld
(M551) and Prof. Adams' braze (M552) results (see Monthly Progress
Reports Nos. 10 and 11). Detailed and quantitative application of
the results of this computer program, however, still awaits the
gathering of pertinent crystal growth data. A final report is ex-

pected to be written after these data are gathered and correlated.



INTRODUCTION

Space processing is moving closer to reality. Bigger, better,
and more uniform single crystals of important semiconductors and
welds or brazes of improved properties have already been made in
space, as reported in the Third Space Processing Symposium at
Marshall Space Flight Center. Although processing of structural
materials may certainly have a profit potential in the long range,
it appears that the high cost per pound of single-érystal elec-
tronic and optical materials makes these materials the most de-
sirable contenders for immediate profitable returns from space
processing. A selected single crystal study is, therefore, highly
desirable to help us understand the segregation effects during

solidification in weightless melts.

Important. tools for understanding these segregation effects
are analytic solutions or computer programs that simulate or pre-
dict what actually happens during space manufacturing. Such solu-
tions and programs, furthermore, are probably necessary in space
processing and other expériments where available time and experi-
mental facilities are limited, the cost per sample or experiment
is very high, and yet only a limited total number of tests or test

samples can be conducted.

‘ Theoretical predictions often greatly save time while compu-
ter simulation saves cost. Specifically, analytic solutions and
computer programs'allow us'to answer many questions during the
planning or execution of space experiments on material solidifica-

tion, such as learning

¢ Yhat phenomena are most important and what other

phenomena are negligible



~® Which influences are favorable to our understand-

ing of weightless solidification and which are not

¢ What conditions lead to optimal combination of
the favorable influences or elimination of the

unfavorable ones

* What sample and processing conditions should be

used

® What is the best way to analyze the resultant
samples for understanding a particular phenomenon

or influence

* How to save time and money — that is, how to

maximize scientific return

We have developed a number of analytic solutions relating to
solidification and evaporation (Refs. 1-3). Several important com=-
puter programs have also been developed. Some of these solutions
and programs were developed under our Contract NAS 8=-27891, and
they are already proving useful in correlating actual experimental
results (Refs. 4 and 5).

These analytié solutions and computer programs are, however,
still in their early stages of development. The physical models
involved are very siﬁple and require considerable improvements to
be used for other applications. It is, therefore, an important
objective of this contract to refine and improve these models and

the resultant analytic solutions and computer programs.

These refined solutions and programs are more widely useful,
have greater predictive value, and provide more accurate results.
Such accuracies ‘are absolutely necessary to separate the rather
subtle zero-gravity effects on solidification, in the presence of

noise due to other unavoidable or unanticipated but ever-present
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miscellaneous effects. As a result of this continued work, more
efficient space experiments -and greater scientific returns appear
possible. More meaningful solidification experiments and fuller

utilization of the unique spaée environment may also result.

The predicted results of our refined solutions and programs
should, of course, first be checked with selected experiments.
Another objective of this contract is, therefore, to design unique
experiments to correlate the numerical results to actual solidifi-

cation processes. ' This work is yet to be reported.

- Review of Previous Contract

‘Under our NASA Contract NAS 8-27891, "Segregation Effects Dur-
ing Solidification in Weightless Melts" (Ref. 3), two types of melt
segregation effectslwere studied: evaporative segregation, or
segregation due to surface éVaporation, and ffeezing segregation,

or segregation due to liquid-solid phase transformation.

These segregation effects are cloSely related. In fact, evépo-
rative segregation always precedés freezing segregatidn to some de-
gree and must often be studied prior to performing meaningful solidi-
fication experimenfs. This is particularly true since evaporation
may cause the melt composition, at least at the critical surface
regions or iayérs, to be affected manyfold, often within seconds,
so that at the surface region ot layer the melting point and other
thermophysical properties, nucleation characteristics, base for
undercooling, and critical velocity to avoid constitutional super-

cooling, may be completely unexpected.
To predict the segregation effects of solidification time and

temperature and to correlate these predictions with actual experi-

>

mental data, ”normal_evaporation equations" were developed (Refs. 1

4=6) . An evaporative congruent temperature (or equi=-evaporative



temperature) was then defined and listed for various binary or
ternary alloys. Knowing these congruent temperatures and the
solute and solvent evaporating rates, one can predict the type
(solute depletion or enrichment) and magnitude of compositional

or constitutional changes on the critical melt surface. One ap-
plication of this unique temperature is to explain, predict, or
plan "anomalous" evaporative or constitutional melting (on cooling)
or solidification (on heating) experiments. We then computed for
a simple model the reactive jetting forces due to Sﬁrface evapora-
tion and, in particular, showed that these forces can be very sub-
stantial on a differentially heated sample and may completely
destroy the unique zero-gravity environment in space manufacturing
(Ref. 7). In addition, these jetting forces may initiate surface
deformation and vibration or other fluid disturbances, and may even
produce some convection currents not normally anticipated. These
studies also showed which sample materials are preferable, which
should be avoided, and what impurities are harmful in producing ex-
cessive jetting or effective as stabilizing influences. The rela-
tionship between normal evaporation and normal freezing was then
considered. Finally, applications of evaporation to space manufac-
turing concerning material loss and dimensional control, composi-
‘tional changes, evaporative purification, surface cooling, mate-
rials standards, and freezing data interpretation were briefly de-

scribed.

In the area of segregation due to solidification, we explained
in some detail the normal freezing process and its successful use
in the semiconductor industry. Various constitutional diagrams
demonstrated the desirability of using nonconstant segregation co-

efficient techniques in metallurgical studies. We then stated the

basic normal freezing differential equation, together with its



solutions for cases where the liquidus and solidus are quadratic,
cubic, high-degree polynomial, and exponeﬁtial functions of the
melt temperature. The meahing-of constant segregation coefficient
‘was discussed, together with the associated errors due to curva-
tures of the liquidus and solidus lines and the best value of
constant segregation coefficient for a given solidification ex-
_periment. Numerical methods for computing the norﬁal ffeezing
behavior were then given. Finally, as an example,lthe steady
state solidification of the Ni-Sn system under conditions of
limited liquid diffusion and nonconstant segregation coefficients
was described. This system was studied in the M553 experiment on
Skylab. '



IMPORTANCE OF EVAPORATION

Evaporation is important in space melting and solidification

for the following reasons:

¢ Significant evaporation of alloy qompbnents
always occurs at high temperatures in space

vacuum environments

. High—temperature evaporétion of alloys is gen—
erally a neglected area of systematic research.
Yet, unless the complete evaporative segregation
behavior is understood and analyzed, solidifica-
tion and its related segregation effects may not
be properly studied because of ill-defined ini-
tial conditions. Before the liquid alloy can be
controllably solidified or even melted, there is
invariabiy some surface evaporation to cause
changes in composition,  freezing tempefatUre,
supercooling characteristics, nucleation and

growth morphology conditions, and the like

® Controlled space evaporation probably most
closely meets the requirements of our model of
normal evaporation. We may thus be able to ob-
tain material purity or evaporation standards,
thermal properties, or even such basic thermo-
dynamic properties as heat of evaporation, ac-
tivity coefficients, and sticking coefficients

that are difficult or impossible to obtain on

earth
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Evaporation is a much simpler process than freez-
ing, since the former does not involve such com-
plicated phenomena as nucleation, phase transforma=-
tion, and constitutional or nonconstitutional
supercooling. Thus, in normal evaporation for
specific geometries or alloy systems, we may
ideally isolate and investigate such other phe-
nomena as heat conduction or radiation, liquid

or solid diffusion, fluid dynamics, and convec-
tion currents. Exact knowledge of these phenomena

is necessary to understand solidification

Evaporation causes surface cooling due to the
heat of evaporation. This evaporative cooling
effect is particularly important in low-melting

materials (Ref. 8)

Different rates of evaporation at various sur-
face regions give rise to unbalanced forces and
momenta that may produce erratic or unwanted
accelerations, surface distortions and vibra-
tions, exceedingly large "equivalent gravities,"
and possibly new types of powerful convection

currents in zero-gravity conditions

Evaporation may cause the surface composition
of certain unwanted or unsuspected impurities
to be increased a thousandfold or millionfold
within seconds so that the layer's melting
point and other thermophysical properties,
nucleation characteristics, base for under-
cooling, and critical velocity to avoid con-

stitutional supercooling may be completely



unexpected. In fact, anomalous "constitutional®

or evaporative melting on cooling, of solidifica=
tion on heating, is possible because of surface
evaporation. In addition, very large artificial
gravities (e.g., 10 g), strong fluid disturbances,
or even new and significant convection currents may
be produced from surface evaporation. These phenom=
ena have been observed in the M553 movies, according

to Dr. Martin Tobin of Westinghouse Co., Pa.

The much greater evaporative segregation effects, if unac-
counted for, would almost certainly conceal any minor or subtle
zero-gravity effects, particularly in the presence of other unknown
- or uncontrolled effects. Definitive space solidification work
should probably, therefore, be preceded by an evaporative compati-
bility study of the sample materials and their possible associated
impurities. 1In fact, evaporation is almost certain to be very im-~
portant or so overwhelming that the effect of zero-gravity or
freezing segregation may be masked or even reversed. A freely
suspended molten drop in space may, for example, have its surface
solute concentration greatly enriched (as much as a millionfold),
by neglected and undetectable trace impurities within seconds of
its deployment. We are then dealing at the critical surface layer
with a completely new and unanticipated alloy having an entirely
different composition, melting point, surface tension, thermophysi-
cal properties, latent heat of fusion, undercooling and nucleation

characteristics, growth morphology, and the like.

From this we can also see that any analytical, numerical, or
experimental study on solidification may yield completely unex-
pected or irrelevant results if the important and ever-present

evaporation phenomena is not adequately taken care of. This is

11



particularly true in the study of nucleation, undercooling, and

space manufacturing. Another important aspect of the present con-
tractual work is to incorporate this generally neglected evapora-
tion phenomena to define the exact initial and boundary conditions

before and during the alloy solidification process.

12



COMPUTER PROGRAM WITHOUT SURFACE EVAPORATION AND RADIATION

Solidification, even in one~g, 1is a complicated process in-
volving a multitude of interrelated phenomena such as mass and
heat transfer, phase change, and fluid motion. Comprehensive re-
views on solidification have been given, for example, by Chalmers
(Ref. 9), Tiller (Ref. 10), Christian (Ref. 11}, and ILi (Ref. 12).

Solidification in zero-g is still very complicated. Here,
gravitational force is negligibly small, but other effects as a
result become imﬁortant. For example, surface tension often
plays a dominant role in determining the sample shape, processing
techniqqe and the resulting contamination level of the processed
samples. Evéporation is another ever-present, complicating or
dominating factor, but one that may be used to advantage when
understood. Neglected, or improperly controlled evaporation may
drastically change sample surface composition, fluid motion, equiva-
lent gravities, nucleation, and undercooling characteristiqs as
- previously described. The prévious program, under Contract |

NAS 8-27891, however, does not deal with evaporation.

Mathematical Definition of Solidification Problem

To understaﬁd thoroughly solute segregation either from com-
bined evaporation and solidification, or in single-crystal growth,
one requires a complete characterization of the (mass) diffusion
and temperature fields in the solid crystal and #emaining melt.
fﬁe zero-gravity effect on the solidification may be'overshadowed
by other effects invariably present (such as evaporation) in any
such growth process — a condition necessitating_that'such charac=-
terization be accurately defined. Unfortunately, the coupled par-

tial differential equations for the diffusion and temperature

13



fields are generally not solvable. Although special case solutions
have been given for some types of usually physicaily nonsatisfying,
two~phase Stefan problems, for the general case solution we must
resort to numerical computations, Ex1st1ng numerlcal methods are
always subject to such unrealistic assumptions as constancy of
interfacial veloc1ty, temperature or temperature gradients, segre-'
gation coeff1c1ents, diffusion constants, and other material thermo-

physical properties.

Under NAS 8-27891, a number of computer programs were de-
veloped to study the unidirectional solidification of a binary
alloy. These programs employ analytical and numerical methods.

" The analytic program is based on some closed-form solutions of a
simple model and gives results for our numerical program to com-
pare. The model for the analytic program deals with a binary
alloy at a constant temperature and concentration throughout the
initial 11qu1d melt, with the surface temperature instantaneously
dropped below the liquidus temperature. The liquid~solid inter=~
face temperature_is assumed constant, and the concentrations of
the alloy at the interface are given by the phase diagram having
curved liquidus ‘and solidus lines. In addition, the interface
‘boundary plane moves according to a square root law relative to
the solidification time. The program also allows the interface
temperature and interface boundary to vary from these fixed rules,
but in practice the variation is negligible and not above the com-
puter error level (Ref. 3),

Although covered in detail in the final report on NAS 8- -27891,
the mathematical formulation of the model is presented below for
the sake of completeness

We deal in unidirectional solldlficatlon with-a liquid binary

alloy to be dlrectlonally Solldlfled into two phases, liquid and

14



solid. We consider the liquid alloy to be semi-infinite with origi-
nal (at t =.0) temperature T, and concentration C,- Solidifi-
cation occurs when the temperature at x = 0 is changed from T,

to a lower value T either instantaneously or gradually, so

P
that T, is below ihe temperature T, at which the liquid mix-
ture at concentration C0 can be in equilibrium with a solid
phase. As solidification occurs, the solid phase grows and its
boundary is located at x = y(t), and the interface temperature
at this point is- Ti(t)' The partial differential equations de-

scribing the solidification proceés are the following:

2

, 7T ?T_ 3%c. ac
s . S D S =—2 for 0 <x < yt) (1)
ag 2 ot ’ s 2 ot y
ox A%
2 a?rﬂ oT, azcE oC, |
ay —5— = 5¢ » Dy —5—=3% for y(t) <x <= (2)

where the variabies T, C represent the temperature and concentra~
tion (of solute in sdlvent) and the subscripts £, s denote the

‘liquid and solid phases, reépectivély. The thermal and mass diffu-
sion coefficients as, a,, DS,.Dﬂ are assumed constant. The fol-

lowing conditions are usually assumed throughout:

(a) Tﬂ(x,O) = T and Cﬂ(x,O) = C

o O

(6) T,(»,t) =T =~ and C,(»,t) = C_-

© T(y®.t) = ,(y(0).¢) = T,(®

C@ o(y@.0) = g (r)

15



(e) Cﬁ(y(t),t) = 'fg(Ti(t))

_ ar, o,
()  pyy(t) = kg 55— - k, S for  x = y(t)

3¢ 3¢
&) [fs(Ti_(t)) - fg(Ti(t))Js'f(t) =D, 5= - D =S

s ox

for x = y(t)

th) y@&) =a /T

Equation (a) describes the condition that the original mix-
ture is all liquid at temperature T, and concentration C,-
Equation (b) is a consequence of the semi-infinite nature of the
mixture so that at any time t, the portion near infinity is un-
changed. Equation (c) assumes that at the solid-liquid interface
plane there is an interface temperature Ti(t) and that both the
solid and liquid phases at x = y(t) have this temperature. There
is no discontinuity in temperature. Equations (d) and (e) state
that the concentrations of solid and liquid at the interface are
given by the solidus and liquidus curves, respectively, of the con-
stitutional diagram for the alloy. Equation (f) connects the de=-
rivative of the moving boundary with the redistribution of tempera-
ture and Eq. (g) connects the same boundary with that of coucentra-
tion. Equation (h) relates the position of the interface boundary

to the solidification time ¢t.

The conditions on TS(O,t) and CS(O,t) are not fixed in

our discussion, and a number of alternatives are considered:

16



1. T_(0,t) = T, (t) with T,(t) equal to a constant for
all t; |

2. 1linear, Tl(t) =T, + t(Tl - TO)/s for t < s and
Tl(t) = T1 for t > 8;

3. exponential, Tl(t) = T1 + (T0 - Tl) e-t/S_ so
T,(0) = T and T (=) = Ty. |

For CS(O,t) the conditions considered are CS(O,t) = Cl
usually taken CS(TZ) or at times a condition conserving mass

between 0 and .

The two approaches we have pursued méy be'designated as ana-
lytic and numerical. The numerical approach can be applied to all
three conditions on temperature whereas the analytic approach holds
only the case of constant temperature instantaneously applied. A
variant of this analytic method to apply to linear varying tem-

perature has been investigated.

An analytic solution to the coupled partial differential equa-
tions (1) and (2) subject to the initial and boundafy conditions
(a) through (g) has been given (Ref. 13); A numerical program has

been designed for the amalytic solution.

These numerical programs developed under NAS 8-27891 are
based upon finite difference approximations of the pértial and
ordinary derivatives and involve a variable spacing (for improved
computing efficiency). The programs havé given acceptable results
and compared well with the reference anaiytic solution, where com-
parable. The baéic physical properties'such as densities, diffu=-
sivities, specific heats, tﬁermal conductivities, and heat of
fusion have been held to be constant,anﬂ.independent of tempera~

tures and concentrations.

17



COMPUTER PROGRAM DEVELOPED UNDER PRESENT CONTRACT

Under the present contract, we have extended the programs to
allow for reasonable variation of these physical properties. The
approach that has first been taken is to base the values of these
physical properties upon extrapolated values of temperature and
concentration, and then to determine the values of temperature and
concentration,. The'process is then repeated by re-evaluations of
the physical properties. Other modifications of our original pro-
gram are: 1) to store the physical properties for each of the
mesh points and to employ the appropriate quantities at each step,
and 2) to recheck the mass and heat diffusion equations to make

certain that the constancy of these properties is not assumed.

‘ An'additional'major program modification has been the inclu-
sion of evaporation effects. This includes evaporation before
solidification thét is mathematically identical to the problem of
simple solidification in binary alloys. After solidification
‘starts, significaht evaporation may still exist. 'We then have to
'deal with two moving (solid-gas and solid-liquid) boundaries
located at v(t) for evaporation and at ‘z(t) for solidificationm,

as will be described.

Modification of the initial and boundary conditions a-h has
also been made to make the problem more physically meaningful. One
such modification is to include a surfaée heat radiative loss term
involving Ta. This term affects the-conVErgence of the problem
and creates the need for different algorithms. As reported pre-
viously, (Ref. 14), the surface cooling due to evaporation is neg-
ligible for many metallic systems such as nickelrand iron alloys,
or other higher melting materials, and has not been studied in de-

tall under this contract.

PRECEDING PAd BLANE Nor m.m
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To obtain solutions for realistic boundary conditions and to
include the various mass transfer effects, numerical solutions of
the partial differential equations of heat and mass transfer are
required. We have again used the finite difference method to ob-

tain the numerical solution.

The boundary conditions for surface temperature include radia-
tion cooling as given by the Stefan-Boltzmann equation and also

include evaporative cooling for both components of the alloy.
‘ 1.

At the interface it is assumed that the temperature and concentra-
tion relationships for each phase are given by the constitutional
diagram for the alloy. The temperature dependence of the thermal

and mass diffusion coefficients are allowed for each phase.

20



GENERALIZED SOLIDIFICATION WITH SURFACE EVAPORATION

Evaporative Solidification of -a Binary Alloy

Given a semi-infinite binary alloy melt, initially at concen-
tration GO- and temperature To’ we consider the solidificatioh
of the alloy due to surface heat loss by evaporation and radiation
(Fig. 1). There are two separate regimes to be considered. The
first is concerned with temperature and concentration variations
before solidification begins; the evaporation causes the original
liquid=-vapor boundary to change. Thus, we have a moving boundary
problem. The second regime begins with the soiidification which
introduces a boundary between the freezing solid and remaining
liquid phases whose compositions, we assume, follow the phase
diagram, i.e., solidus and liquidus curve relations hold. Conse-
quently, after solidification begins, there are two moving bounda~-
ries: one is the evaporative boundary and the other is the freez-

ing or solidification boundary.

1.0
- _
o 0.1 P
g Gast Solild Solld
B & :
g 3 g
£ HE /e
S 0.01 F 8 = olﬁ
a ®|S Slp
e I N
P -—||"‘"
15 4&; P EE!‘
Q ol o
0.001F & g|§
IE '310
[ m
] i 1 i }
N 0.1 1.0 10.0 . 100.0 1,000

Distance from Initlal Melt Surface, um

BT e

Fig. 1 Evaporation-Solidification of 0.0l Sb-Ge
" Initially at 970°C at 0.01 Second
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Equations at the Evaporative Boundary

We denote the evaporative boundary as x = y(t) where
y(0) = 0. The evaporation rates in mol/mzlsec for pure solute

and solvent are, respectively (Ref. 15),

Au-Bu/T -1
U=K 10 (MT) 2
[ 1 s
A =T IT
o "o § -1
v=k 107 YV MT)?
e v s
5

i

where Ke 5.83 x 10 , Mﬁ, MV are molecular weights for solute
and solvent atoms, . T, is the evaporating surface temperature in
degree K, and Au’ B> Av, BV are the evaporating constants for
solute and solvent, respectively. If Py and P, are the solute

and solvent densities, then

dy UMuC VMV(]. - C)
+
dt pu p

v
where C is the concentration at the moving boundary.

The heat loss rate equation at the boundary due to radiation

and evaporation is given by

- 4
St = EUTS UWuC V?v(l C)

where ¢ 1is emissivity coefficient, o the Stefan-Boltzmann con-

stant, and i and Y, are specific heats for solute and solvent,
respectively.

The equation for the rate of concentration change is

&l

=~ (U - V)¢
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Since the evaporative boundary is a moving one, and since both the
evaporation temperature T and solute concentration € are func-

tions of distance x = y(t) and time t, i.e., T = T(x,t) and
C = C(x,t), the total derivatives g% and %% may be obtained

from the partials, i.e.,

dr _ or , (3Ty (¥
it ~ac T (ax) (dt)
X=y
dc _ 3¢ . (3¢y (9n
dt ~ ot T (ag)X: (dD
oT ac . ,
where Sk and 35 are evaluated at the moving boundaries.
- dy dr- dg . R
Given dc’ at’ and ot we can integrate for y, T, and C

for the moving boundary using a modified Euler method.

v(l) = vt + At (%%
tH+AL t
(i+1) AL dv) (dv) (1)
= v + — — + —
t+AL t 2 (dt A .
dv(i) o _
where ac is the value of the derivative at time t 4+ At

using the value v for v,

To determine '%g at time t and .t + At requires knowledge
of the distribution of temperatures at both times. Those at time
t + At are initially approxiﬁated by an extrapolation and are cor-
rected using an approximated value of the temperature of the evap-
orating boundary with the heat diffusion difference equations.
Since the change in temperature at the boundary ié greatest due to

the heat of evaporation, more iterations are applied to determine

-
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it than to the determination of temperature distribution by means
of diffusion equations. Similar considerations hold for the de-

d
termination of %% and E%'

The computations of the position of the evaporation boundary
[y = y(t)], temperature (T), and solute concentration (C) at
this boundary constitute an initial value problem in ordinary dif-
ferential equations. Thus, given Yo = 0, T = T, C= C,, at
time ¢t = 0, and given also the equations for velocity of movement
of this boundary dy/dt, and rate of change of temperature and
solute concentration dT/dt, and dC/dt, we can determine for
selected times the values of y, T, and C. The method used is

an iterated Euler scheme:
_ AE (o, o
Yl = T3 (yh + yn+1)

where the initial value is taken as y;. This scheme must

Vel
be connected to the problem of determining the temperature and
solute concentration distribution within the semi-infinite body
because the derivatives dy/dt, DT/dt, and dc/dt depend upon
these quantities. The first step is to determine a first approxi-
mation of the temperature and solute concentration by extrapola-
tion and then correct these values from the newly approximated
values of the boundary position and the temperature and concentra-

tion thereat.

Start of Solidification

To determine the time when solidification has begun, the
boundafy temperature is compared with the temperature obtained by
the inverse function for the liquidus curve evaluated at the
boundary concentration. TIf the former is greater, then solidifica-
tion has not yet begun. If it is smaller, then solidification has
begun. In order to avoid an exact iterative procedure to determine
the instant of solidification and to follow it up by a starting

procedure for the first time interval thereafter, a simplified
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approach has been taken that introduces a small error in the evapo-
rative boundary and freezing boundary. By allowing the temperature
to be below the solidification temperature by a small amount and
by assuming that the temperatures at both boundaries are the same,
a starting value of x = z(t) of the freeéing boundary is deter-
mined so that the loss in concentration due to solidification is
compensated by the gain in concentration at the liquidus. Given
the new temperature TI2 below the temperature at which solidifi-
cation begins, we compute CSS = FS(TI2) and CLL = FL(TI2), the
corresponding solid and liquid concentrations given by the phase
diagram. To determine DEL2 = ZI2 - YI2, the distance between

the evaporative boundary and solid-liquid,interface, we assume

that the solid is entirely at concentration CSS,. and the liquid
varies linearly from CLL to CC(Ii2), the concentration at the
first mesh point x(II2) after the evaporative boundary. The
total concentration is to equal the concentration in the whole
regime had no solidification taken place. We assume it to be

CL2 computed at YI2 and to vary linearly to CC(II2) at

x(I12). This yields the equation

css x DELZ + (CLL + €C(I12))/2 * (x(II2) - Y12 - DELZ)

- (cL2 + ccuiz))/z x (x(112) - v12)

Hence
DELZ % [CSS - ((CLL + CC(I12)/2)] = (x(II2) - YI2) % (CL2 - CLL)/2
where

DELZ = (CLL-CL2)/2 * (x(I12) - Y12} + (CLL+ CC(II2)/2 - CSS)

Then
_— dz _ DELZ
Z12 = YI2 + DELZ and dt = DELTS
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This enables us to begln the next time step with initial

dy dz _
values for y(ts), z(ts), 3¢’ dc’ T v(t )) (z(t )) = TI2, and

(y(ts)) = (8§, cs(z(ts)) = (58, CE z(t )) = CLL.

The Two-Boundary Problem=-Derivative Estimation

The equations at the freezing boundary are those given in
the Grumman Final Report RE-458 to Contract NAS 8-27891 (Ref. 3),
with the exception that the freezing boundary is now called
x = z(t) and not x = y(t) as in Eq.‘49 c~g. At every time step
we must compute (in addition to the temperature and concentration
at the evaporation boundary) the temperature at the freezing bound-
ary. The concentrations are determined by the phase diagram. The
method we employ is that which determines T (the solidification
temperature) and g% by means of Eq. (49) f,g. Having obtained
g%- we obtain z(t) by means of a modified Euler method. Since

T ac
the Eq. (49) f,g required approximation for (§;E>z,t and (§§£)z,t’

we must develop techniques for these approximations appropriate to

various situations for mesh points. In addition, for the computa-

dy dT dc .
tion of dt’ ac’ and dat at the evaporative boundary, we also

OT oG .
need (Bx)y,t and (Bx)y,t' When there are two mesh points be-

tween y and z, then the techniques alluded to above are avail-

2
able. This involves determining é—% at both y and 2z and the
ox
2
same for é—%. When there is only one mesh point between vy and
ox '
d2T .
z, then 5 at both points are the same. When there are no mesh
ox |
2.
points between y and 2z, then we can assume either that ng
ox

is zero and hence‘ (%g)y = (%ﬁ)z = lei : i(V) or that
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g3

¥t _ OTY _ () .Z2I¥ T o
axz = k 3% and henge (Sz)y ‘(l 5 k)Bx and
3T\ _ Z =y \OT .
(ai)z (l + 5 _k>ax' The choice of k wmust be small so that
2 2
9T 1 2T _ 12 2L g negligible. Thus, since z-y is also
2 2 ox
ox X 2
very small this option is indistinguishable from _é—% = 0. We
ox
have three cases: 1) no mesh points between two boundaries and we
2
3T _ Ty _ /3T ..
assume X 5> =0, (Bx)y = (az)z’ 2) one mesh point between y and
x2 |
z when é*% is obtained from the three points and
_ ox ‘
. 0 |
3y _ T(2) - I(y) (= = ¥) 3T o T(z) - T()
(B:Dy - z -y 2 Nyl and (83{')2 - z -y +
2 : ,
£E—§—zi-é%§, and 3) when two or more mesh points, say X, and
ox | _ . | azT
Xi4pr are between y and z so that we can compute (5;5)2 and
2 | O T(xy) = T(Y)
(é—%a separately and distinct. Then (%I) = = ~ -
% NORIY S

(x; =) (32§>5* and <ar) _ @) - T&yy) N (@ = %341 (62T>

2 ox ox z S S | 2 Aaxz z
327 2¢
In general, it is necessary to compute 5 and =7 in three
: ' ox ox

Ways; two ways indicated above for the solid regime and a third
for the liquid side of the freezing boundary. It is similarly

necessary to compute %% and %% in three ways.

Boundary and Mesh Points

When boundary points come close to mesh points, the éomputa-

tion of derivatives may be vitiated by closeness to mesh point.
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Therefore, tests are made to determine when such closeness occurs

- as usually expressed in terms of a decimal fraction of the interval.
In that case, the reference point is moved to the next mesh point
and the values of T and C at the skipped mesh point are ob-
tained by linear interpolation. This interpolation depends on
which side of the solid-liquid interface the mesh point lies. For

the evaporative boundary similar considerations hold.

Solution for Remaining Points

The solution for the remaining points is obtained as in the
Final Report previously mentioned, pages 3-14 and 3-15 (Ref. 3). One
change is, however, necessary because the first mesh point (or
more) are no longer under consideration if the evaporative boundary
has passed them. The subroutine TRIST is used to solve for the re-
maining points. In this subroutine we compute the values of tem-
perature and concentration at intermediate mesh points when given
the values at the two extreme mesh points. We replace the values
at the mesh point to the left of the evaporative boundary by those
at the evaporative boundary point, before solving for the inter-
mediate points. This can be done without destroying’any useful
information since that mesh point is no longer used in the compu =
tations. The subroutine TRIST does not depend upon equal spacing

or any regular spacing and therefore can accommodate this usage.

Convergence

The convergence problem is the crux of the program. Oscilla-
tion tends to cause the needed quantities to overflow. Thus, tests
must be made on all the quantities to contain them within reason-
able bounds. The subroutine MOTON is used to check the monotonicity
of these consecutive points. In addition, the temperature at the

evaporative boundary is necessarily less than the temperature at

28



the freezing boundary. This condition is always imposed in the
pregfam. |

In addition, the solution for the solidification temperature
- and freezing boundary derivative (especially the latter) involves
very rapidly changing qﬁantities. More iterations should, there-
fore, be expended in this part of the program. Fewer iterations
are needed for determining the evaporative boundary, and the tem-
pefature and concentration at that boundary. The program allows
five iterations in the former for each of the latter. The number
of iterations of the latter is used in a manner analogous to that
described in Final Report RE-458 (Ref. 3).

An input quaﬁtity NIT (usually a multiple of 4) gives the
maximum number of iterations. When NIT/2 iterations occur and
convergence is not reached, the time step size is halved. This
process is continued'uﬁtil either convergence is attained or the
‘minimum step %}1owed by the program has been iterated NIT + 1
times. 1In this case the program may stop or continue on using the
nonconverged quantities. Very often these quantities are suffi-
ciently smooth so that convergence will -occur on the next interval

and the program gives satisfactory results.

However, if the program proceeds with the minimum step and
the maximum number of iterations, the results may be spurious. In
case of overflow, there is no doubt of it. Otherwise the user

must look at results to decide whether he finds them reasonable.
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IMPROVED COMPUTER PROGRAM

The complete computer program for the generalized solidifica-
tion problem is listed herein (see appendix), together with a
glossary explaining the special names used in the program. This

computer program has the following unique features:

* Surface evaporation, and its related effects
such as material loss, evaporative segrega-
tion, and surface cooling due to the heat of

evaporation, have been considered

® Material parameters such as solid and liquid
densities, specific heats, thermal conductivi-
ties, mass diffusivities, and latent heat of
fusion or evaporation, are allowed to'vary

with the temperature and composition

® Realistic phase diagrams involving curved

liquids and solidus lines are used

¢ Two moving boundaries are involved, i.e.,
‘the evaporative boundary and freezing

boundary

* Surface temperature is determined by the
combined effect of heat radiation, evapora-

tive cooling, and thermal diffusion

Use of Computer Program

The computer program works well if the following three input
program parameters are properly chosen: 1) time step size (DELT),

2) grid spacing (DELX), and 3) maximum iteration count (NIT).
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The solidification boundary is sensitive to the grid spacing.
This is because in passing through a mesh point, discontinuity in
the computation occurs for the following reasons. We compute
the derivatives in terms of the temperatures and concentrations
at the discrete mesh points. When one mesh point is dropped be-
cause solidification occurs near it, the derivative based on a
substituting new mesh point is discontinuous with that based on
the previous mesh point. Though this discontinuity can be reduced
by using a smaller time step size, it would be a self-defeating
strategy. An alternative is to accept the discontinuous results
as they occur, advantages being taken of the fact that the program
corrects itself. Although the derivative dz/dt 1is large when
the solid-liquid interface passes through a mesh point, it becomes
smaller thereafter thereby correcting the solidification boundary

position,

The frequency‘of this self-correction depends on the grid
spacing. Too small a grid spacing would cause too frequent self-
corrections. Too large a grid spacing, on the other hand, would
obscure the rapid temperature variations around the solidification
boundary. This indicates that a proper choice of the grid spacing
is required to achieve an optimal tradeoff between accuracy and
computing time. There is another tradeoff between the time step

size and maximum iteration count for optimal computing results.

Since each evaporation;solidification problem represents a
different and unique physical situation, each case must be dealt
with separately. However, based on our experience, the following
guidelines would be helpful: I

The first consideration for the choice of the grid spacing
is the behavior of the evaporation boundary after solidification

begins. 1If the evaporation boundary is virtually stationary as
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compared to the solidification boundary, the grid spacing should
be chosen so that the evaporation boundary is within the first
mesh interval (between the first and second mesh points). If, on
the other hand, the evaporation boundary is moving at velocities
comparable to those of the solidification boundary, then the grid
spacing can be selected more freely. The major consideration in
this case is the relationship between the grid spacing and the
time step size. For a fixed time step size, the grid spacing
should be chosen so that at least four time intervals (of step
sizes) occur beforé the solidification boundary passes through a

mesh point.

In cases where the evaporation boundary is viftﬁally sta-
tionary, one must experiment to determine an optimum time step
size in terms of-accuracy and computing time. The conditions of
the experiment are as follows. Set both the minimum time step
size (DELTM) and the time printing interval (DELP) to zero. Set-
ting the time printing interval to zero will cause the computer to
print out every computer time step. Setting the minimum time step
size to zero will not cause the program to cut baék indefinitely
but will use, as the minimum, the time step size divided by 1024,
By examining the computed results, onelcan see at what time step
sizes the progrém is running. By examining the actual iteration
count (IT), one can see if the program is converging=or not. 1f
not converging'fepeatedly, a smaller time step size is indicated.
If the program is converging most of the time, then the minimum
time step size can be set at the level of the most frequent time
step size and the actual iteration count re-examined to see if the
program still cdﬁverges most of the time. For long runs, the time
printing interval must not be zero or small, but must be chosen in

consideration with the amount of the required output.
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To improve the computing time on long runs, one should con-
sider enlarging the grid spacing as suggested above as one of the
tradeoffs. In addition, one may change the maximum iteration

count upwards or downwards to also imprové the computing time.

Our computer program has the capability for assuming equal or
unequal (doubling) mesh point spacings. Our experience, as indi-
cated in Tables 1-4, shows that the unequal spacing scheme gives
practically the same accuracy with far less computations as com-
pared with the equal spacing scheme. This may be due to the
rapidity at which the temperature declines at the evaporation
boundary. Other physical situations may give different results and

may indicate that the equal spacing scheme should be used.

The program ihput parameters consist of a set of integers IX,
IAM, NIT, IM, N, and NCN; and a set of real numbers DELX, DELT,
DELTM, DELP, TF, and S. IX is the maximum number of mesh points
to be used in the program. Present, IX 28. IAM is the spacing
option indicator. TIf 1AM equals 0, the points of mesh are equally
spaced with grid spacing DELX. TIf IAM = 1, an unequal spacing is
indicated. The first two intervals are equal and set to DELX.
Thereafter, each interval is double the previous interval in spac-
ing. NIT is the maximum number of iterations as interpreted in
the context of halving the time step size: If the step is begun
at the minimum time step, the NIT is the maximum number of itera-
tions allowed. IM is the number of mesh points in actual use.
The input value of IM introduces the minimum number of mesh points
to be used. Thereafter additional mesh points are added as re-
quired bf.a substantial change in temperature at next to last mesh
point, that is, 1 degree below the initial temperature. IM is

increased until IM is equal to IX.
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TABLE 1 VARIATION OF TEMPERATURE (°C) AT EVAPORATIVE BOUNDARY
FOR VARTOUS COMPUTATION SCHEMES

Scheme

Grid

Spacing

time, ms

L= R - AT

.05
.075
.0875
.09375
.1
.1125
.1375
.1875
2875
4875
.8875
6875
.2875

W ow RN R R RN NN NN OO

934,

I

0.01
equal

966 .
959.
945.
938.
935.
934,
934,

933,
933,
933.
933,
932,
930.
927.
921.
909.
885.

* ' .
Hand interpoclations
N.C. not computed
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II

0.01

unequal

966.
959,
945.
938,
935.
934 .
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933.
933.
933.
932,
930.

. 927.

921.
909.
885.
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ITI

0.001
equal

966 .
959,
95,
938,
935.
934
934,
934,
933.
933,
933,
933,
932,
930.
927.
921,
909,
885.
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0.001

unequal

966,
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945,
938.
935.
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933.
933.
933.
932,
930.
927.
921.
909.
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0.0001 cn
unequal

966 . 5
959. 5
945.8
939.0
935.6
N.C. .
N.C.
N.C.
N